TimesFM is a cutting-edge time series forecasting model developed by Google. It is designed to understand and generate detailed forecasts based on temporal data, making it a powerful tool for tasks such as demand forecasting, anomaly detection, and trend analysis.
Inference Time | Cold Start Time |
---|---|
0.12 sec | 35.84 sec |
model.py
.
def initialize
: In this function, you will initialize your model and define any variable
that you want to use during inference.
def infer
: This function gets called for every request that you send. Here you can define all the steps that are required for the inference. You can also pass custom values for inference and pass it through inputs(dict)
parameter.
def finalize
: This function cleans up all the allocated memory.
input_schema.py
in your GitHub/Gitlab repository this will help us create the Input parameters. You can checkout our documentation on Input / Output Schema.
For this tutorial, we have defined a parameter prompt
which is required during the API call. Now lets create the input_schema.py
.
Add a custom model
button that you see on the top right. An import wizard will open up.
--gpu A100
: Specifies the GPU type for deployment. Available options include A10
, A100
, and T4
.--runtime inferless-runtime-config.yaml
: Defines the runtime configuration file. If not specified, the default Inferless runtime is used.