In this tutorial, you’ll build a serverless conversational agent that leverages Google Maps data via the Model Context Protocol (MCP), Inferless, Ollama and Langchain
@modelcontextprotocol/server-google-maps
) over stdio.
stdio_client
+ MCP‐Google‐Maps server to fetch place data from Google’s API.
OllamaManager
class to easily:
app.py
script, set up a clear workflow that:
--gpu A100
: Specifies the GPU type for deployment. Available options include A10
, A100
, and T4
.--runtime inferless-runtime-config.yaml
: Defines the runtime configuration file. If not specified, the default Inferless runtime is used.Scenario | On-Demand Cost | Serverless Cost |
---|---|---|
100 requests/day | $28.8 (24 hours billed at $1.22/hour) | $2.19 (1.8 hours billed at $1.22/hour) |